Sampling of Random Data Streams

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted Random Sampling over Data Streams

In this work, we present a comprehensive treatment of weighted random sampling (WRS) over data streams. More precisely, we examine two natural interpretations of the item weights, describe an existing algorithm for each case ([2,4]), discuss sampling with and without replacement and show adaptations of the algorithms for several WRS problems and evolving data streams.

متن کامل

Optimal Random Sampling from Distributed Streams Revisited

We give an improved algorithm for drawing a random sample from a large data stream when the input elements are distributed across multiple sites which communicate via a central coordinator. At any point in time the set of elements held by the coordinator represent a uniform random sample from the set of all the elements observed so far. When compared with prior work, our algorithms asymptotical...

متن کامل

KSample: Dynamic Sampling Over Unbounded Data Streams

Data sampling over data streams is common practice to allow the analysis of data in real-time. However, sampling over data streams becomes complex when the stream does not fit in memory, and worse yet, when the length of the stream is unknown. A well-known technique for sampling data streams is the Reservoir Sampling. It requires a fixed-size reservoir that corresponds to the resulting sample s...

متن کامل

Weighted Sampling Without Replacement from Data Streams

Weighted sampling without replacement has proved to be a very important tool in designing new algorithms. Efraimidis and Spirakis (IPL 2006) presented an algorithm for weighted sampling without replacement from data streams. Their algorithm works under the assumption of precise computations over the interval [0, 1]. Cohen and Kaplan (VLDB 2008) used similar methods for their bottom-k sketches. ...

متن کامل

Stratified Reservoir Sampling over Heterogeneous Data Streams

Reservoir sampling is a well-known technique for random sampling over data streams. In many streaming applications, however, an input stream may be naturally heterogeneous, i.e., composed of substreams whose statistical properties may also vary considerably. For this class of applications, the conventional reservoir sampling technique does not guarantee a statistically sufficient number of tupl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Electrical and Electronic Engineering

سال: 2011

ISSN: 1804-3119,1336-1376

DOI: 10.15598/aeee.v9i1.33